Friday 24 May 2013

A new method for producing clean hydrogen



TEM_image_Au-a-Fe2O3_catalyst






Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications. While hydrogen is ubiquitous in the environment, producing and collecting molecular hydrogen for transportation and industrial uses is expensive and complicated. Just as importantly, a byproduct of most … more…

Thursday 23 May 2013

World Drug Tracker: Scientists sequence genome of ‘sacred lotus,’ may ...

World Drug Tracker: Scientists sequence genome of ‘sacred lotus,’ may ...: Scientists sequence genome of ‘sacred lotus,’ may hold anti-aging secrets A team of 70 scientists from the U.S., China, Austral...

One-Pot Method for Regioselective Bromin­ation and Sequential Carbon–Carbon Bond-Forming Reactions of Allylic Alcohol Derivatives

One-Pot Method for Regioselective Bromin­ation and Sequential Carbon–Carbon Bond-Forming Reactions of Allylic Alcohol Derivatives
European Journal of Organic Chemistry Noriki Kutsumura, Yusuke Matsubara, Kentaro Niwa, Ai Ito and Takao Saito
DOI: 10.1002/ejoc.201300173

Thumbnail image of graphical abstract



Di- or trisubstituted olefins were synthesized in high yields with excellent regio- and cis–trans selectivities in one-pot reactions, including a regioselective DBU-promoted trans HBr elimination. This one-pot methodology could become a straightforward transformation of “straight” alkenes into “Y-shaped” alkenes.


An efficient one-pot method for the regioselective bromination of allylic alcohol derivatives (two-step reaction sequence) followed by Sonogashira, Negishi, or Suzuki–Miyaura coupling reactions in the same reaction vessel (three-step reaction sequence) has been developed. The key reaction in these one-pot systems is the regioselective DBU-promoted trans HBr elimination of vicinal dibromides bearing an adjacent O-functional group.